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It is shown in this paper that the equations of perturbed motion of a
gyrohorizoncompass, given in [ 1 ], can be reduced to a system with con-
stant coefficients.

A rigorous analytic justification of the passage to the simplified
equations of Geckeler is presented. The influence of an external periodic
force is also considered.

1. The equations of perturbed motion of a spatial gyrohorizoncompass
of Geckeler-Anschiitz [1] are of the form
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It is assumed that the ship is maneuvering arbitrarily along a fixed
latitude ¢ and in system (1.1) new variables

oL:Rucoscp 6=§in¢x4 (1.3)

v 1, sin &°
are introduced, such that ¢° satisfies the condition
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o _ -1 miV 1.4
&€ = c¢o0s B ( )

Further, B and y are also expressed through xy, and x,, respectively.
We obtain the following system:

v2 2B sin ¢ (1.5)
P
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where
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If in system (1.5) those terms are neglected which contain the
angular velocity () as a factor, then it uncouples into two independent
systems of the form

(1.7)
P v2 Tor B — — 1COS QL. ___V¥2Bsing . P
1 — ucos @ 2 2 — Py, 3 Pl Ly, Xy = 2B sin¢x3

which determine the harmonic undamped oscillations of the compass with
an angular frequency ».

The simplified equations (1.7), apparently obtained first by Geckeler
[21, form the basis of the majority of studies and texts on the theory
of the gyrohorizoncompass.

2. We pass in system (1.5) to new variables with the aid of the non-
singular substitution of the form

g = xyc08 O — ——05100056+ucswx351n6—/\tancpx4sln8
éo = uo':,sq) x, cos O -+ x, cos 6 — x5 sin 6 ——XEI%E Z, sin 9
£y = ucvsq)x sin § 4+ x, sin 8 - z; cos 6 +v—2£—sﬂ’x4 cos 6 (2.1)
Q:—i—cotcpxlsine -V—ZBi:ﬁ-xg sinB—v—wl—)él—iﬁxgcos6+x4cosﬁ
where
:
9 (1) = SQ(r)dr (2.2)

0

As a result, we are led to a system of equations with respect to &,
which uncouples into two independent systems with constant coefficients
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and possesses the same structure as the system (1.7), namely

Pl

o v3 & : v2zBsm £
'§21 Ez—~ ‘“‘“"ucosq)glv §3:—— (p§4, g4:m

S17 5 cos @

s (2.3

7

The system (1.5) is thus reducible to the system of Geckeler (1.7).

We also give the formulas for the inverse transformation from vari-
ables cf'k to the variables x;, which will be used in the sequel. We have

»

H
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3. We assume that the ship performs sequential circulations with con-
stant velocity v and a circular frequency on a given latitude ¢, begin-
ning, for example, with the course due north.

Then, as is shown in[2 ], we may assume

. S
Q ~ —po sin ot (”“W> (3.1)
With this assumption the system (1.5) will be (3.2)
#1 = —o s — Ayo tan @ Sin ©f%, s = po Sin @iz — L2BSNQ
ucosp ° o tan @ ’ W 2 Pl T
#3 = — U COSQPX1 — W Sin wlxs, da = —i—ap,w cot ¢ sin wim +§§%$ T3
The system associated with (3.2) is of the form
(3.3)
U1 = u COS @Yz — ~—;m> cot @ sin wlys, Fs = po sin olys — iﬁ”g—‘my‘
g)zz————vz——yl—-—umsinmts ja=Ap@ t i V:2B sin g
Zeos g Y3, Ja=hpo tan 9 sin oty 4 ——5—ys
By means of variables [1 ]
(3.4
w1 (t) = —Y—ys wa () = ys — i sy V=T
U COS @ y b2, 2 ¥ 2Bsi_ntpvy E=¥V—1)

we transform the system (3.3) into an easily integrable system of two
equations of first order.
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If y,(¢) is any solution of system (3.3), then, as is known [4 ], the
€XPTeSS1On ¥y %; + YoXg + ¥3%; +: ¥,%, will be the first integral of the
system (3.2). Using Formulas (3.4) and satisfying in the solutions of
the system (3.3) the initial conditions

(i = k)

(75

we construct real expressions for the four independent first integrals
of system (3.2). As a result we obtain

Yir (0) = O = {é

v

21 c08vicost —
uCos @

Z2 sinvicosf 4

v .
] ; s . _
+ roesg Zasin vising Atan @ zscos visinh = C,

COS - .
st 2 “v P, sinvicos § -+ 2 cos v cos b — 3 cosvEsin § —
v2B sin . .
e ~—P—14£.’I}4S).th81n 6 :C2
L COS . . .
1% 4 sin vesin § - x2 cos v sin 8 - s cos vi cos 8 -
kY '
v 2B sin .
4 Y225 ® g sin vi cos §=Cs
Pt

L cot P X1 €08 visinh — B Z2 sin visin § —

A v 2B sin @ )

Pl .
— ToEsmg %o SR vtcos B J-xqa cos vi cos b = C,

Here, in accordance with (2.2) and (3.1), in the case of circulation
it must be assumed

0 () =n (cosmt — 1) (3.9)

It already becomes clear that, as a linear substitution with periodic
coefficients, which reduces the system (3.2) to a system with constant
coefficients (2.3), Expressions (2.1) should be taken, where 6(t) satis-
fies Formula (3.5).

The roots of the characteristic equations of the transformed system
(2.3) are, as is known, the characteristic exponents of system (3.2).
Designating the latter by «_ (s = 1, 2, 3, 4) we obtain

Ky, 2 = j: vi, K3, 4 = + vi (3.6)

4. Let us apply the theory presented to a study of the influence of
an external periodic disturbance.

Let us consider the nonhomogeneous system

V2

y — i A
Toos ¢ X2 Ap © tan @ sin oixs {(4.1)

Il =
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&2 = —u 00 px1 — Po sin oizs + F (1)
. . w3 Bsm(p
T3 = Jo 8In wixz — P L

‘ . ) Pl
fa = - p 0Ot @ SIN OLIL Fgpas B

and let

F @) =acoswt (a>0) (4.2)

Passing, in accordance with (2.1), to the variables £, we obtain two
independent systems of the form

(4.3)
b = e b — emg P D008 (), b= — TEEREE P () sint ()
b= —ucos@h +F () cos 0 (), = gpi_ti—mme F())sind (0

where 0, as before, satisfies Formula (3.5).

We will assume, further, that p << 1/2; we then may set sin 6 = 6,
cos 6 = 1, and the system (4.3) will be

. . o 2B
b B P, G=—T2E0 gy 44
: : Pl Pl

E2 = —ucospbiF (1), Ea = B g Es — V3B F @6

It is important to note that in the case considered the term F(t)6(t)
has a constant component.

Indeed, in accordance with (3.5) and (4.2)

F (t) 6 (t) = pa cos ot (coswt — 1) = M -{- EL cos 20t —pa cos ot (4.5)

This constant component, expressed by the first term in Formula (4.5),
is of considerable influence on the reading of the gyrohorizoncompass.

We proceed now to the integration of system (4.4). We have from the
first two equations of this system, taking into account Formula (4.2)
and the initial conditions £,(0) = 0, £,(0) = 0, the following solutions:
via

(6] . .
= m(cos ol — ¢co8 vi + Tsm wl — sin vt>

&1
(%v) (4.6)

va . w .
£z = m(cos ®t — cos vi -}~ sin vi -——v-»smmt)
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Assuming w >> v, we obtain from this approximate, but in many cases
sufficiently accurate expressions

v vig ’ o ., .
ol = o5 (cos vt~ cos i — = sin ol +sinvit)
va . .
2 = o (cos vi — cos @t %sm @t — 8in vt> (4.7

Further, from the remaining two equations of system (4.4), and taking
into account (4.2), (4.5) and the initial conditions £,(0) = 0, £,(0) = 0,
we obtain

= v 1 v 1 § pow® 2 1 .
23_”3('\23——@2“_2“«;2—4@2 —_2?;)805%_}_ v (vzméwz_vz—ma)Sant+

1 pa pva 1 va . )
L= + W( =C0S 2w — sin 9mt> vzp_ = (cos ©f — $in mt)

ey
Pl a
b= v:3B sin ¢ [ ¥+ "COS 200t — ap cos & - (4.8)
1 v 1 . 2 2 1
+ Ma'\’(vg_mg B W By ——;—)sm Vi — pao (v2—4m2 — G )cosvt +
ave - v 2 2 o -
-+ v———‘;_ gt Sl 20t — vt»‘r _‘i‘ﬂ sin wt - %J— cos 2wt — % €08 mt}

Returning to Formula (4.6), we have

- 2via
u coscp v:—lucosg

& + (cos @t — cos vi) (4.9)

Neglecting v? as compared to coz, we obtain from here

£ 2via
&ty Cosq) &= Tnose (cos vt — cos o) (4.10)

Taking account of this simplification we also have

- uc:s Pe 4G = 2(:2“ (—:”i sin of — sin vt ) (4.11)
- SO ke _ v2Bsing o pe .
u COS(p S5 1 }\4 tan q)gél - wcos @ (1 -G0S 'Vt), §3 ———-—ﬁ‘—c—————gé Py "'{’—Sln vt

From the formulas for inverse transformation (2.4), where in accord-
ance with what has been said one should set sin 6 = @, cos # =1, we have

! 2v3g Wa
zy = ?[m (cos v¢ — cos 0t) — — Cos(p (1 — cos vt) (1 — cos mt)](4 12)
17 2va o )
g == ?{ — gin ol — sin vi) ————~sm vt {1 — cos mt)}

In these expressions the most important will be the last terms which
are due to the presence of the constant component in Expressions (4.5).
Designating them by Ax, and Ax, respectively, we have
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- 1 nla .
Ax; = — gu:’es@ {1 — cos vt} (1 — cos wt) %.13)
Axy = v % iJL{‘—sin vt (1 — cos wi)

If the periodic external force is acting during a short interval of
time (0, ¢t*) which is small as compared to the period of M. Schuler, then
for 0 £ t € t* we may assume cos vt = 1, sin vt = vt; we then have

Az; =0, Azy= —1p%a (1 —cosowt)? (4.14)
The maximum possible deviations will be
2 2
[Arml =2 500 | Agen| = B2 (4.15)
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